Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38426802

RESUMEN

We present a novel method for detecting red tide (Karenia brevis) blooms off the west coast of Florida, driven by a neural network classifier that combines remote sensing data with spatiotemporally distributed in situ sample data. The network detects blooms over a 1-km grid, using seven ocean color features from the MODIS-Aqua satellite platform (2002-2021) and in situ sample data collected by the Florida Fish and Wildlife Conservation Commission and its partners. Model performance was demonstrably enhanced by two key innovations: depth normalization of satellite features and encoding of an in situ feature. The satellite features were normalized to adjust for depth-dependent bottom reflection effects in shallow coastal waters. The in situ data were used to engineer a feature that contextualizes recent nearby ground truth of K. brevis concentrations through a K-nearest neighbor spatiotemporal proximity weighting scheme. A rigorous experimental comparison revealed that our model outperforms existing remote detection methods presented in the literature and applied in practice. This classifier has strong potential to be operationalized to support more efficient monitoring and mitigation of future blooms, more accurate communication about their spatial extent and distribution, and a deeper scientific understanding of bloom dynamics, transport, drivers, and impacts in the region. This approach also has the potential to be adapted for the detection of other algal blooms in coastal waters. Integr Environ Assess Manag 2024;00:1-15. © 2024 SETAC.

2.
Water Res ; 253: 121286, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38341974

RESUMEN

By integrating soil and water assessment tool (SWAT) modeling and land use and land cover (LULC) based multi-variable statistical analysis, this study aimed to identify driving factors, potential thresholds, and critical source areas (CSAs) to enhance water quality in southern Alabama and northwest Florida's Choctawhatchee Watershed. The results revealed the significance of forest cover and of the lumped developed areas and cultivated crops ("Source Areas") in influencing water quality. The stepwise linear regression analysis based on self-organizing maps (SOMs) showed that a negative correlation between forest percent cover and total nitrogen (TN), organic nitrogen (ORGN), and organic phosphorus (ORGP), highlighting the importance of forests in reducing nutrient loads. Conversely, Source Area percentage was positively correlated with total phosphorus (TP) loads, indicating the influence of human activities on TP levels. The receiver operating characteristic (ROC) curve analysis determined thresholds for forest percentage and Source Area percentage as 37.47 % and 20.26 %, respectively. These thresholds serve as important reference points for identifying CSAs. The CSAs identified based on these thresholds covered a relatively small portion (28 %) but contributed 47 % of TN and 50 % of TP of the whole watershed. The study underscores the importance of considering both physical process-based modeling and multi-variable statistical analysis for a comprehensive understanding of watershed management, i.e., the identification of CSAs and the associated variables and their tipping points to maintain water quality.


Asunto(s)
Contaminación Difusa , Contaminantes Químicos del Agua , Humanos , Calidad del Agua , Suelo , Contaminación Difusa/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Ríos , Fósforo/análisis , Nitrógeno/análisis , China
3.
Nature ; 626(7997): 111-118, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297171

RESUMEN

The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.


Asunto(s)
Braquiuros , Estuarios , Nutrias , Conducta Predatoria , Erosión del Suelo , Humedales , Animales , Biomasa , Braquiuros/fisiología , Nutrias/fisiología , Estados Unidos , Plantas , Elevación del Nivel del Mar , Olas de Marea , Nutrientes/metabolismo , Cadena Alimentaria
4.
Nat Commun ; 14(1): 8076, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057308

RESUMEN

Ecosystem restoration has traditionally focused on re-establishing vegetation and other foundation species at basal trophic levels, with mixed outcomes. Here, we show that threatened shorebirds could be important to restoring coastal wetland multifunctionality. We carried out surveys and manipulative field experiments in a region along the Yellow Sea affected by the invasive cordgrass Spartina alterniflora. We found that planting native plants alone failed to restore wetland multifunctionality in a field restoration experiment. Shorebird exclusion weakened wetland multifunctionality, whereas mimicking higher predation before shorebird population declines by excluding their key prey - crab grazers - enhanced wetland multifunctionality. The mechanism underlying these effects is a simple trophic cascade, whereby shorebirds control crab grazers that otherwise suppress native vegetation recovery and destabilize sediments (via bioturbation). Our findings suggest that harnessing the top-down effects of shorebirds - through habitat conservation, rewilding, or temporary simulation of consumptive or non-consumptive effects - should be explored as a nature-based solution to restoring the multifunctionality of degraded coastal wetlands.


Asunto(s)
Braquiuros , Humedales , Animales , Ecosistema , Poaceae/metabolismo , Plantas
5.
mBio ; : e0147623, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37931127

RESUMEN

Changing climatic conditions influence parameters associated with the growth of pathogenic Vibrio spp. in the environment and, hence, are linked to increased incidence of vibriosis. Between 1992 and 2022, a long-term increase in Vibrio spp. infections was reported in Florida, USA. Furthermore, a spike in Vibrio spp. infections was reported post Hurricane Ian, a category five storm that made landfall in Florida on 28 September 2022. During October 2022, water and oyster samples were collected from three stations in Lee County in an area significantly impacted by Ian. Vibrio spp. were isolated, and whole-genome sequencing and phylogenetic analysis were done, with a focus on Vibrio parahaemolyticus and Vibrio vulnificus to provide genetic insight into pathogenic strains circulating in the environment. Metagenomic analysis of water samples provided insight with respect to human health-related factors, notably the detection of approximately 12 pathogenic Vibrio spp., virulence and antibiotic resistance genes, and mobile genetic elements, including the SXT/R391 family of integrative conjugative elements. Environmental parameters were monitored as part of a long-term time series analysis done using satellite remote sensing. In addition to anomalous rainfall and storm surge, changes in sea surface temperature and chlorophyll concentration during and after Ian favored the growth of Vibrio spp. In conclusion, genetic analysis coupled with environmental data and remote sensing provides useful public health information and, hence, constitute a valuable tool to proactively detect and characterize environmental pathogens, notably vibrios. These data can aid the development of early warning systems by yielding a larger source of information for public health during climate change. Evidence suggests warming temperatures are associated with the spread of potentially pathogenic Vibrio spp. and the emergence of human disease globally. Following Hurricane Ian, the State of Florida reported a sharp increase in the number of reported Vibrio spp. infections and deaths. Hence, monitoring of pathogens, including vibrios, and environmental parameters influencing their occurrence is critical to public health. Here, DNA sequencing was used to investigate the genomic diversity of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Florida coastal waters post Hurricane Ian, in October 2022. Additionally, the microbial community of water samples was profiled to detect the presence of Vibrio spp. and other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Long-term environmental data analysis showed changes in environmental parameters during and after Ian were optimal for the growth of Vibrio spp. and related pathogens. Collectively, results will be used to develop predictive risk models during climate change.

6.
Trends Ecol Evol ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37923644

RESUMEN

Foundation species facilitate communities, modulate energy flow, and define ecosystems, but their ecological roles after death are frequently overlooked. Here, we reveal the widespread importance of their dead structures as unique, interacting components of ecosystems that are vulnerable to global change. Key metabolic activity, mobility, and morphology traits of foundation species either change or persist after death with important consequences for ecosystem functions, biodiversity, and subsidy dynamics. Dead foundation species frequently mediate ecosystem stability, resilience, and transitions, often through feedbacks, and harnessing their structural and trophic roles can improve restoration outcomes. Enhanced recognition of dead foundation species and their incorporation into habitat monitoring, ecological theory, and ecosystem forecasting can help solve the escalating conservation challenges of the Anthropocene.

7.
Sci Total Environ ; 902: 166460, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611724

RESUMEN

Ecosystems shaped by habitat-modifying organisms such as reefs, vegetated coastal systems and peatlands, provide valuable ecosystem services, such as carbon storage and coastal protection. However, they are declining worldwide. Ecosystem restoration is a key tool for mitigating these losses but has proven failure-prone, because ecosystem stability often hinges on self-facilitation generated by emergent traits from habitat modifiers. Emergent traits are not expressed by the single individual, but emerge at the level of an aggregation: a minimum patch-size or density-threshold must be exceeded to generate self-facilitation. Self-facilitation has been successfully harnessed for restoration by clumping transplanted organisms, but requires large amounts of often-limiting and costly donor material. Recent advancements highlight that kickstarting self-facilitation by mimicking emergent traits can similarly increase restoration success. Here, we provide a framework for combining expertise from ecologists, engineers and industrial product designers to transition from trial-and-error to emergent trait design-based, cost-efficient approaches to support large-scale restoration.


Asunto(s)
Ecología , Ecosistema , Retroalimentación , Ingeniería
8.
Sci Total Environ ; 898: 165544, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37453706

RESUMEN

Coastal saltmarshes provide globally important ecosystem services including 'blue carbon' sequestration, flood protection, pollutant remediation, habitat provision and cultural value. Large portions of marshes have been lost or fragmented as a result of land reclamation, embankment construction, and pollution. Sea level rise threatens marsh survival by blocking landward migration where coastlines have been developed. Research-informed saltmarsh conservation and restoration efforts are helping to prevent further loss, yet significant knowledge gaps remain. Using a mixed methods approach, this paper identifies ten research priorities through an online questionnaire and a residential workshop attended by an international, multi-disciplinary network of 35 saltmarsh experts spanning natural, physical and social sciences across research, policy, and practitioner sectors. Priorities have been grouped under four thematic areas of research: Saltmarsh Area Extent, Change and Restoration Potential (including past, present, global variation), Spatio-social contexts of Ecosystem Service delivery (e.g. influences of environmental context, climate change, and stakeholder groups on service provisioning), Patterns and Processes in saltmarsh functioning (global drivers of saltmarsh ecosystem structure/function) and Management and Policy Needs (how management varies contextually; challenges/opportunities for management). Although not intended to be exhaustive, the challenges, opportunities, and strategies for addressing each research priority examined here, providing a blueprint of the work that needs to be done to protect saltmarshes for future generations.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humedales , Cambio Climático , Elevación del Nivel del Mar
9.
Sci Total Environ ; 883: 163707, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37105489

RESUMEN

The Atlantic ribbed mussel (Geukensia demissa) is common in southeastern US salt marshes, where they form dense aggregations (mounds), that occur in the highest densities and sizes on the marsh platform close to the tidal creeks' heads. Within these marshes, mussels help build marsh elevation via their biodeposition of organic and inorganic material, stimulate the growth of the dominant foundation species cordgrass (Spartina alterniflora), and create hotspots of invertebrate biodiversity, nutrient cycling, and drought resilience. Given their powerful role, there is rising interest in assessing natural variation in the distribution of mussel mounds and using such information to guide marsh conservation and restoration strategies. However, gathering such information is challenging, because the small dimension (∼1 m) of the mounds and the presence of overlying vegetation make it difficult to quantify mound distribution on the marsh. Therefore, this study presents a new procedure to compute the distribution, height, radius, volume, and distance of mounds in marsh environments using remote sensing. A high-resolution UAV-Lidar point cloud has been collected over a highly vegetated salt marsh in Georgia, USA, using a custom-built laser scanner system. An original detection algorithm, based on a Random Forest classifier, has been implemented to identify the mounds from the point cloud. The algorithm has been trained and tested on surveyed mounds and provides their location and geometric properties. Results indicate that the classifier can distinguish mussel mounds from non-mussel mound locations with an accuracy of 95 %. The classifier identified ∼8000 mounds, which occupy 10 % of the study domain, and a volume (shells+feces/pseudofeces) of 680 m3. The method is highly useful in efforts to monitor mussel mounds over time and scale up to assess mounds across sites, providing invaluable data for future studies related to the geomorphic evolution of marshes to sea level rise and siting marsh conservation and enhancement projects.


Asunto(s)
Mytilidae , Humedales , Animales , Biodiversidad , Invertebrados , Factores de Tiempo , Ecosistema
10.
Nat Commun ; 14(1): 881, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797251

RESUMEN

The fate of coastal ecosystems depends on their ability to keep pace with sea-level rise-yet projections of accretion widely ignore effects of engineering fauna. Here, we quantify effects of the mussel, Geukensia demissa, on southeastern US saltmarsh accretion. Multi-season and -tidal stage surveys, in combination with field experiments, reveal that deposition is 2.8-10.7-times greater on mussel aggregations than any other marsh location. Our Delft-3D-BIVALVES model further predicts that mussels drive substantial changes to both the magnitude (±<0.1 cm·yr-1) and spatial patterning of accretion at marsh domain scales. We explore the validity of model predictions with a multi-year creekshed mussel manipulation of >200,000 mussels and find that this faunal engineer drives far greater changes to relative marsh accretion rates than predicted (±>0.4 cm·yr-1). Thus, we highlight an urgent need for empirical, experimental, and modeling work to resolve the importance of faunal engineers in directly and indirectly modifying the persistence of coastal ecosystems globally.


Asunto(s)
Mytilidae , Humedales , Animales , Ecosistema , Elevación del Nivel del Mar , Ingeniería
11.
PLoS One ; 17(8): e0273258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36044458

RESUMEN

Coastal ecosystems such as sand dunes, mangrove forests, and salt marshes provide natural storm protection for vulnerable shorelines. At the same time, storms erode and redistribute biological materials among coastal systems via wrack. Yet how such cross-ecosystem subsidies affect post-storm recovery is not well understood. Here, we report an experimental investigation into the effect of storm wrack on eco-geomorphological recovery of a coastal embryo dune in north-eastern Florida, USA, following hurricane Irma. We contrasted replicated 100-m2 wrack-removal and unmanipulated (control) plots, measuring vegetation and geomorphological responses over 21 months. Relative to controls, grass cover was reduced 4-fold where diverse storm wrack, including seagrass rhizomes, seaweed, and wood, was removed. Wrack removal was also associated with a reduction in mean elevation, which persisted until the end of the experiment when removal plots had a 14% lower mean elevation than control plots. These results suggest that subsides of wrack re-distributed from other ecosystem types (e.g. seagrasses, macroalgae, uplands): i) enhances the growth of certain dune-building grasses; and ii) boosts the geomorphological recovery of coastal dunes. Our study also indicates that the practice of post-storm beach cleaning to remove wrack-a practice widespread outside of protected areas-may undermine the resilience of coastal dunes and their services.


Asunto(s)
Tormentas Ciclónicas , Ecosistema , Florida , Poaceae/fisiología , Humedales
12.
Science ; 376(6593): eabn1479, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35511964

RESUMEN

Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots.


Asunto(s)
Ecosistema , Humedales , Carbono , Secuestro de Carbono , Retroalimentación , Humanos
13.
Mar Pollut Bull ; 178: 113598, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35366551

RESUMEN

Legacy mining facilities pose significant risks to aquatic resources. From March 30th to April 9th, 2021, 814 million liters of phosphate mining wastewater and marine dredge water from the Piney Point facility were released into lower Tampa Bay (Florida, USA). This resulted in an estimated addition of 186 metric tons of total nitrogen, exceeding typical annual external nitrogen load estimates to lower Tampa Bay in a matter of days. An initial phytoplankton bloom (non-harmful diatoms) was first observed in April. Filamentous cyanobacteria blooms (Dapis spp.) peaked in June, followed by a bloom of the red tide organism Karenia brevis. Reported fish kills tracked K. brevis concentrations, prompting cleanup of over 1600 metric tons of dead fish. Seagrasses had minimal changes over the study period. By comparing these results to baseline environmental monitoring data, we demonstrate adverse water quality changes in response to abnormally high and rapidly delivered nitrogen loads.


Asunto(s)
Bahías , Cianobacterias , Contaminación del Agua , Animales , Florida , Floraciones de Algas Nocivas , Minería , Nitrógeno/análisis , Nutrientes
14.
J Environ Manage ; 312: 114823, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35313150

RESUMEN

Mangroves provide critical ecosystems services, contributing an estimated 42 billion US dollars to global fisheries, storing 25.5 million tons of carbon per year, and providing flood protection to over 15 million people annually. Yet, they are increasingly threatened by factors ranging from local resource exploitation to global climate change, with an estimated 35% of mangrove forests lost in the past two decades. These threats are difficult to manage due to the intrinsic characteristics of mangrove systems and their provisioning services, and their transboundary and pan-global nature. Due to their unique intertidal ecological niche, mangroves are often treated as a "common pool resource" within national legal frameworks, making them particularly susceptible to exploitation. Moreover, they form ecological connections through numerous biotic and abiotic processes that cross political boundaries. Because of these qualities a cross-scale nested framework of international, regional, and local coordination is necessary to successfully sustain mangrove ecosystems and their valuable services. Although coordination across the geopolitical spectrum is often cited as a need for effective management of common resources such as mangroves, there has been no formal analysis of mangrove multiscale governance. In this paper we address this gap by providing a comprehensive analysis of interactions between and within international, regional, and local mangrove management regimes and examine the challenges and opportunities such multiscale governance frameworks present. We highlight Costa Rica as a case study to demonstrate the universal relevance and potential of multi-scale governance and explore its downscale potential. Using Elinor Ostrom's principles for self-governance of the commons as our touchstone, we identify where improvements to the status quo could be implemented to increase its effectiveness of the current frameworks to meet the ongoing challenge of managing mangrove-derived resources and services in the face of a changing climate and human needs.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Cambio Climático , Explotaciones Pesqueras , Humanos , Humedales
16.
Sci Total Environ ; 827: 154149, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35227724

RESUMEN

Karenia brevis blooms on Florida's Gulf Coast severely affect regional ecosystems, coastal economies, and public health, and formulating effective management and policy strategies to address these blooms requires an advanced understanding of the processes driving them. Recent research suggests that natural processes explain offshore bloom initiation and shoreward transport, while anthropogenic nutrient inputs may intensify blooms upon arrival along the coast. However, past correlation studies have failed to detect compelling evidence linking coastal blooms to watershed covariates indicative of anthropogenic inputs. We explain why correlation is neither necessary nor sufficient to demonstrate a causal relationship-i.e., a persistent pattern of interaction governed by deterministic rules-and pursue an empirical investigation leveraging the fact that systematic temporal patterns may reveal systematic cause-and-effect relationships. Using time series derived from in-situ sample data, we applied singular spectrum analysis-a non-parametric spectral decomposition method-to recover deterministic signals in the dynamics of K. brevis blooms and upstream water quality and discharge covariates in the Charlotte Harbor region between 2012 and 2021. Next, we applied causal analysis methods based on chaos theory-i.e., convergent cross-mapping and S-mapping-to detect and quantify persistent, state-dependent interaction regimes between coastal blooms and watershed covariates. We discovered that nitrogen-enriched Caloosahatchee River discharges have consistently intensified K. brevis blooms to varying degrees over time. River discharge was typically most influential at the earliest stages of blooms, while total nitrogen concentrations exerted the strongest influence during blooms' growth/maintenance stages. These results indicate that discharges and nitrogen inputs influence blooms through distinct yet synergistic causal mechanisms. Additionally, we traced this anthropogenic influence upstream to Lake Okeechobee (which discharges to the Caloosahatchee River) and the Kissimmee River basin (which drains into Lake Okeechobee), suggesting that watershed-scale nutrient management and modifications to Lake Okeechobee discharge protocols will likely be necessary to mitigate coastal blooms.


Asunto(s)
Dinoflagelados , Floraciones de Algas Nocivas , Ecosistema , Florida , Nitrógeno
17.
Nat Commun ; 13(1): 581, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102155

RESUMEN

Habitat heterogeneity is considered a primary causal driver underpinning patterns of diversity, yet the universal role of heterogeneity in structuring biodiversity is unclear due to a lack of coordinated experiments testing its effects across geographic scales and habitat types. Furthermore, key species interactions that can enhance heterogeneity, such as facilitation cascades of foundation species, have been largely overlooked in general biodiversity models. Here, we performed 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which variation in biodiversity is explained by three axes of habitat heterogeneity: the amount of habitat, its morphological complexity, and capacity to provide ecological resources (e.g. food) within and between co-occurring foundation species. We show that positive and additive effects across the three axes of heterogeneity are common, providing a compelling mechanistic insight into the universal importance of habitat heterogeneity in promoting biodiversity via cascades of facilitative interactions. Because many aspects of habitat heterogeneity can be controlled through restoration and management interventions, our findings are directly relevant to biodiversity conservation.


Asunto(s)
Biodiversidad , Animales , Geografía , Especificidad de la Especie
19.
Ecol Appl ; 32(2): e2493, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34773674

RESUMEN

Many wetlands around the world that occur at the base of watersheds are under threat from land-use change, hydrological alteration, nutrient pollution, and invasive species. A relevant measure of whether the ecological character of these ecosystems has changed is the species diversity of wetland-dependent waterbirds, especially those of conservation value. Here, we evaluate the potential mechanisms controlling variability over time and space in avian species diversity of the wetlands in the Palo Verde National Park, a Ramsar Site of international importance in Costa Rica. To do so, we assessed the relative importance of several key wetland condition metrics (i.e., surface water depth, wetland extent, and vegetation greenness), and temporal fluctuations in these metrics, in predicting the abundance of five waterbirds of high conservation value as well as overall waterbird diversity over a 9-yr period. Generalized additive models revealed that mean NDVI, an indicator of vegetation greenness, combined with a metric used to evaluate temporal fluctuations in the wetland extent best predicted four of the five waterbird species of high conservation value as well as overall waterbird species richness and diversity. Black-bellied Whistling-ducks, which account for over one-half of all waterbird individuals, and all waterbird species together were better predicted by including surface water depth along with wetland extent and its fluctuations. Our calibrated species distribution model confidently quantified monthly averages of the predicted total waterbird abundances in seven of the 10 sub-wetlands making up the Ramsar Site and confirmed that the biophysical diversity of this entire wetland system is important to supporting waterbird populations both as a seasonal refuge and more permanently. This work further suggests that optimizing the timing and location of ongoing efforts to reduce invasive vegetation cover may be key to avian conservation by increasing waterbird habitat.


Asunto(s)
Ecosistema , Humedales , Animales , Aves , Conservación de los Recursos Naturales , Costa Rica
20.
J Environ Manage ; 296: 113178, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34225043

RESUMEN

Formed at the confluence of marine and fresh waters, estuaries experience both the seaside pressures of rising sea levels and increasing storm severity, and watershed and precipitation changes that are shifting the quality and quantity of freshwater and sediments delivered from upstream sources. Boating, shoreline hardening, harvesting pressure, and other signatures of human activity are also increasing as populations swell in coastal regions. Given this shifting landscape of pressures, the factors most threatening to estuary health and stability are often uncertain. To identify the greatest contemporary threats to coastal wetlands and oyster reefs across the southeastern United States (Mississippi to North Carolina), we summarized recent population growth and land-cover change and surveyed estuarine management and science experts. From 1996 to 2019, human population growth in the region varied from a 17% decrease to a 171% increase (mean = +43%) with only 5 of the 72 SE US counties losing population, and nearly half growing by more than 40%. Individual counties experienced between 999 and 19,253 km2 of new development (mean: 5725 km2), with 1-5% (mean: 2.6%) of undeveloped lands undergoing development over this period across the region. Correspondingly, our survey of 169 coastal experts highlighted development, shoreline hardening, and upstream modifications to freshwater flow as the most important local threats facing coastal wetlands. Similarly, experts identified development, upstream modifications to freshwater flow, and overharvesting as the most important local threats to oyster reefs. With regards to global threats, experts categorized sea level rise as the most pressing to wetlands, and acidification and precipitation changes as the most pressing to oyster reefs. Survey respondents further identified that more research, driven by collaboration among scientists, engineers, industry professionals, and managers, is needed to assess how precipitation changes, shoreline hardening, and sea level rise are affecting coastal ecosystem stability and function. Due to the profound role of humans in shaping estuarine health, this work highlights that engaging property owners, recreators, and municipalities to implement strategies to improve estuarine health will be vital for sustaining coastal systems in the face of global change.


Asunto(s)
Ostreidae , Humedales , Animales , Ecosistema , Estuarios , Humanos , North Carolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...